Xanthine oxidase (XO) is an important enzyme that catalyzes the oxidation of hypoxanthine to xanthine and xanthine to uric acid in the catabolism of purines in humans. This makes XO a well-recognized target in alleviating hyperuricemia. The present study adapted a structure-based drug discovery approach to develop potent and low-toxicity XO inhibitors with the chalcone skeleton. We introduced a carboxyl group and a hydroxyl group to the B ring and modified the A ring. 35 chalcone derivatives were designed and synthesized. All the 35 derivatives exhibited higher XO inhibition activities (IC50=0.064-0.559μM) compared with allopurinol (IC50=2.588μM). Their high affinity was attributed to strong hydrogen bond interactions formed between the introduced carboxyl and hydroxyl groups with key amino acid residues in XO. SAR analysis disclosed that carboxyl, hydroxyl, ethyl (12c), methylamino (12h), dimethylamino (12i), indolin (13k), and indol (13l) groups played important roles in improving the whole molecules' inhibition potency against XO. ADME predictions and cytotoxicity assays suggested their pharmacokinetic characteristics and biocompatibility were desirable. Additionally, 12c exhibited a significant hypouricemic effect on potassium oxonate-induced hyperuricemia rats after orally administrated at a dose range of 10-40mg/kg, representing a promising anti-hyperuricemia potential for further optimization and development.
Read full abstract