Cathode materials are usually the key to determining battery capacity, suitable cathode materials are an important prerequisite to meet the needs of large-scale energy storage systems in the future. Polyanionic compounds have significant advantages in metal ion storage, such as high operating voltage, excellent structural stability, safety, low cost, and environmental friendliness, and can be excellent cathode options for rechargeable metal-ion batteries. Although some polyanionic compounds have been commercialized, there are still some shortcomings in electronic conductivity, reversible specific capacity, and rate performance, which obviously limits the development of polyanionic compound cathodes in large-scale energy storage systems. Up to now, many strategies including structural design, ion doping, surface coating, and electrolyte optimization have been explored to improve the above defects. Based on the above contents, this paper briefly reviews the research progress and optimization strategies of typical polyanionic compound cathodes in the fields of lithium-ion batteries (LIBs) and other promising metal ion batteries (sodium ion batteries (SIBs), potassium ion batteries (PIBs), magnesium ion batteries (MIBs), calcium ion batteries (CIBs), zinc ion batteries (ZIBs), aluminum ion batteries (AIBs), etc.), aiming to provide a valuable reference for accelerating the commercial application of polyanionic compound cathodes in rechargeable battery systems.
Read full abstract