The study of phase diagrams of multicomponent molten mixtures is traditionally carried out either by experimental measurements or thermodynamic calculations based on known experimental data. Atomistic modeling occupies a significantly smaller share in the methodology, and the capabilities of this approach have been poorly studied. In this work, we simulated the dissolution of cerium trifluoride in the ternary eutectic of lithium, sodium, and potassium fluorides using the molecular dynamics method. A time- and ensemble-scale simulation of the coexisting crystalline phase and melt at several temperatures was carried out. The influence of ensemble size was studied. The rate of dissolution was studied depending on temperature. The asymptote of the dependence agrees well with the experimental liquidus temperature for a given composition. A conclusion is given about the possibility of using molecular dynamics to determine the complete solubility of a melt component.
Read full abstract