Wildfires and their long-term impacts on the environment have become a major concern in the last few decades, in which climate change and enhanced anthropogenic activities have gradually led to increasingly frequent events of such hazards or disasters. Geological materials appear to become more vulnerable to hazards including erosion, floods, landslides and debris flows. In the present study, the well-known 2017 wildfire and subsequent 2018 debris flows in the Montecito area of California are examined. It is found that the post-wildfire debris flows were initiated from erosion and entrainment processes and triggered by intense rainfall. The significant debris deposition in four major creeks in this area is investigated. Numerical modeling of the post-wildfire debris flows is performed by employing a multi-phase mass flow model to simulate the growth in the debris flows and eventual debris deposition. The debris-flow-affected areas estimated from the numerical simulations fairly represent those observed in the field. Overall, the simulated debris deposits are within 7% error of those estimated based on field observations. A similar simulation of the pre-wildfire scenario indicates that the debris would be much less significant. The present study shows that proper numerical simulations can be a promising tool for estimating post-wildfire erosion and the debris-affected areas for hazard assessment and mitigation.