Synaptic connections allow for the exchange and processing of information between neurons. The post-synaptic site of excitatory synapses is often formed on dendritic spines. Dendritic spines are structures of great interest in research centered around synaptic plasticity, neurodevelopment, and neurological and psychiatric disorders. Dendritic spines undergo structural modifications during their lifespan, with properties such as total spine number, dendritic spine size, and morphologically defined subtype altering in response to different processes. Delineating the molecular mechanisms regulating these structural alterations of dendritic spines relies on morphological measurement. This mandates accurate and reproducible dendritic spine analysis to provide experimental evidence. The present study outlines a detailed protocol for dendritic spine quantification and classification using Neurolucida 360 (automatic three-dimensional neuron reconstruction software). This protocol allows for the determination of key dendritic spine properties such as total spine density, spine head volume, and classification into spine subtypes thus enabling effective analysis of dendritic spine structural phenotypes.
Read full abstract