The present study investigated the impact of central α2-adrenergic mechanisms on sympathetic action potential (AP) discharge, recruitment and latency strategies. We used the microneurographic technique to record muscle sympathetic nerve activity and a continuous wavelet transform to investigate postganglionic sympathetic AP firing during a baseline condition and an infusion of a α2-adrenergic receptor agonist, dexmedetomidine (10min loading infusion of 0.225µgkg-1; maintenance infusion of 0.1-0.5µgkgh-1) in eight healthy individuals (28±7years, five females). Dexmedetomidine reduced mean pressure (92±7 to 80±8mmHg, P < 0.001) but did not alter heart rate (61±13 to 60±14bpm; P=0.748). Dexmedetomidine reduced sympathetic AP discharge (126±73 to 27±24 AP100 beats-1, P=0.003) most strongly for medium-sized APs (normalized cluster 2: 21±10 to 5±5 AP100 beats-1; P < 0.001). Dexmedetomidine progressively de-recruited sympathetic APs beginning with the largest AP clusters (12±3 to 7±2 clusters, P=0.002). Despite de-recruiting large AP clusters with shorter latencies, dexmedetomidine reduced AP latency across remaining clusters (1.18±0.12 to 1.13±0.13s, P=0.002). A subset of six participants performed a Valsalva manoeuvre (20s, 40mmHg) during baseline and the dexmedetomidine infusion. Compared to baseline, AP discharge (Δ361±292 to Δ113±155 AP100 beats-1, P=0.011) and AP cluster recruitment elicited by the Valsalva manoeuvre were lower during dexmedetomidine (Δ2±1 to Δ0±2 AP clusters, P=0.041). The reduction in sympathetic AP latency elicited by the Valsalva manoeuvre was not affected by dexmedetomidine (Δ-0.09±0.07 to Δ-0.07±0.14s, P=0.606). Dexmedetomidine reduced baroreflex gain, most strongly for medium-sized APs (normalized cluster 2: -6.0±5 to -1.6±2 %mmHg-1; P=0.008). These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans. KEY POINTS: Sympathetic postganglionic neuronal subpopulations innervating the human circulation exhibit complex patterns of discharge, recruitment and latency. However, the central neural mechanisms governing sympathetic postganglionic discharge remain unclear. This microneurographic study investigated the impact of a dexmedetomidine infusion (α2-adrenergic receptor agonist) on muscle sympathetic postganglionic action potential (AP) discharge, recruitment and latency patterns. Dexmedetomidine infusion inhibited the recruitment of large and fast conducting sympathetic APs and attenuated the discharge of medium sized sympathetic APs that fired during resting conditions and the Valsalva manoeuvre. Dexmedetomidine infusion elicited shorter sympathetic AP latencies during resting conditions but did not affect the reductions in latency that occurred during the Valsalva manoeuvre. These data suggest that α2-adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans.
Read full abstract