Spine landmark detection is of great significance for spinal morphological parameter assessment and three-dimensional reconstruction of the human spine. This detection task generally involves locating spine landmarks in the anterior-posterior (AP) and lateral (LAT) X-rays of the spine. Recently, the two-stage methods for AP spine landmark detection achieve better performance. However, these methods perform poorly in LAT landmark detection because of poor detection accuracy of LAT vertebra due to occlusion. To solve this problem, this paper proposes a new two-stage spine landmark detection method. In the first stage, this paper propose a biplane vertebra detection network for vertebra detection on AP and X-rays simultaneously. Then an epipolar module and a context enhancement module are proposed to assist LAT vertebra detection by using the biplane information and the context information of the vertebrae respectively. In the second stage, the landmarks can be obtained in the detected vertebrae area. Extensive experiment results conducted on a dataset containing 328 pairs of X-rays demonstrate that our method improves the vertebra and landmark detection accuracy.
Read full abstract