This article investigates the elastoplastic response of buckling and postbuckling behavior of plates under uniaxial and biaxial end-shortening considering incremental theory and deformation theory of plasticity. According to elastoplastic buckling and postbuckling behavior of plates, the finite element code considering geometrically and material nonlinearities is developed based on incremental theory and deformation theory of plasticity. The results show that boundary conditions, loading ratios, and aspect ratios of a plate have a significant effect on the discrepancy between incremental theory and deformation theory. Moreover, differences in estimating the buckling point using incremental theory and deformation theory are less than 10%, while in a number of plates at the last loading steps, postbuckling paths determined by incremental theory and deformation theory are diverted from each other. Also the difference between these two theories in the postbuckling region is more noticeable by increasing the thickness of plates.
Read full abstract