As quantum computing advances, current cryptographic protocols are increasingly vulnerable to quantum attacks, particularly those based on Public Key Infrastructure (PKI) like RSA or Elliptic Curve Cryptography (ECC). This paper presents a comprehensive review of Post-Quantum Cryptography (PQC) as a solution to protect digital systems in the quantum era. We provide an in-depth analysis of various quantum-resistant cryptographic algorithms, including lattice-based, code-based, hash-based, isogeny-based, and multivariate approaches. The review highlights the National Institute of Standards and Technology (NIST) PQC standardization process, highlighting key algorithms, such as CRYSTALS–Kyber, CRYSTALS–Dilithium, Falcon, and SPHINCS+, and discusses the strengths, vulnerabilities, and implementation challenges of the leading algorithms. In addition, we explore transition strategies for organizations, emphasizing hybrid cryptography to ensure backward compatibility during migration. This study offers key insights into the future of cryptographic standards and the critical steps necessary to prepare for the transition from classical to quantum-resistant systems.
Read full abstract