Proprotein convertase subtilisin/kexin type 6 (PCSK6) is a calcium-dependent serine proteinase that regulates the proteolytic activity of various precursor proteins and facilitates protein maturation. Dysregulation of PCSK6 expression or function has been implicated in several pathological processes including nervous system diseases. However, whether and how PCSK6 is involved in the pathogenesis of Alzheimer's disease (AD) remains unclear. In this study, we reported that the expression of PCSK6 was significantly increased in the brain tissues of postmortem AD patients and APP23/PS45 transgenic AD model mice, as well as N2AAPP cells. Genetic knockdown of PCSK6 reduced amyloidogenic processing of APP in N2AAPP cells by suppressing the activation of membrane-type 5-matrix metalloproteinase (MT5-MMP), referred to as η-secretase. We further found that PCSK6 cleaved and activated MT5-MMP by recognizing the RRRNKR sequence in its N-terminal propeptide domain in N2A cells. The mutation or knockout of this cleavage motif prevented PCSK6 from interacting with MT5-MMP and performing cleavage. Importantly, genetic knockdown of PCSK6 with adeno-associated virus (AAV) reduced Aβ production and ameliorated hippocampal long-term potentiation (LTP) and long-term spatial learning and memory in APP23/PS45 transgenic mice. Taken together, these results demonstrate that genetic knockdown of PCSK6 effectively alleviate AD-related pathology and cognitive impairments by inactivating MT5-MMP, highlighting its potential as a novel therapeutic target for AD treatment.