BackgroundEYA4 variants are responsible for DFNA10 deafness. Due to its insidious onset and slow progression, hearing loss in autosomal dominant non-syndromic hearing loss (ADNSHL) is usually challenging to detect early in clinical settings, with limited intervention options. Genetic testing can aid in early detection of hearing loss, enabling timely intervention to reduce disability rates and improve the quality of life.MethodsIn this study, we report the case of a Chinese family with postlingual and progressive hearing loss that was passed down for four generations. Whole-exome sequencing (WES) was performed on DNA samples from the proband. Candidate variants identified in the proband and family members were confirmed via Sanger sequencing. In silico prediction tools and co-segregation analyses were used to assess the pathogenicity of identified variants. A literature review of known EYA4 variants was performed, analysing variant frequency, distribution characteristics across different populations, and genotype-phenotype correlations.ResultsWe identified a novel EYA4 variant, c.1745_1748del (p.Glu582ValfsTer6), in a Chinese family with ADNSHL, and co-segregation with the family’s phenotype was confirmed. The audiometry showed mid-to-high frequency downsloping hearing loss. To date, 52 pathogenic variants of EYA4 have been reported, with majority identified in Asian populations. Most observed are the missense and frameshift variants.ConclusionsA novel variant of EYA4 was identified in a Chinese family with postlingual hearing loss, contributing to the expanding spectrum of EYA4 variants. The audiological features of EYA4 variants are highly heterogeneous and often challenging to detect early in clinical settings. Our findings highlight the significance of genetic testing in patients presenting with postlingual hearing loss.
Read full abstract