Nicaraven selectively protects normal tissue from radiation-induced injury. To further develop the clinical application of nicaraven for mitigating the side effects of cancer radiotherapy, we investigated the potential effect of nicaraven administration in radiation-induced inhibition of tumor growth. A subcutaneous tumor model was established in mice by the injection of Lewis lung cancer cells at the back of the chest. X-ray radiation was delivered to the thoracic area and different doses of nicaraven (0, 20, 50, 100 mg/kg) were administrated intraperitoneally pre- or post-irradiation. The tumor size was measured every other day. Mice were euthanized on day 30, and the tumor weight and the levels of cytokines in tumor tissue were measured. Pre- or post-irradiation administration of nicaraven up to a dose of 100 mg/kg did not significantly diminish the radiation-induced inhibition of tumor growth, but post-irradiation administration of 20 and 50 mg/kg nicaraven resulted in relatively lower tumor weight. The levels of IL-1β, IL-6, IL-10, MCP-1, MIP-2a, TGF-β1, VEGF, p53, p21, cyclin D1 and caspase-3 in tumor tissue did not change by nicaraven administration and were not significantly associated with the tumor weights. According to our experimental data, nicaraven will not significantly diminish the radiation-induced inhibition of tumor growth, even with pre-irradiation administration at a high dose.