Anticipatory brain activity makes it possible to predict the occurrence of expected situations. However, events such as traffic accidents are statistically unpredictable and can generate catastrophic consequences. This study investigates the brain activity and effective connectivity associated with anticipating and processing such unexpected, unavoidable accidents. We asked 161 participants to ride a motorcycle simulator while recording their electroencephalographic activity. Of these, 90 participants experienced at least one accident while driving. We conducted both within-subjects and between-subjects comparisons. During the pre-accident period, the right inferior parietal lobe (IPL), left anterior cingulate cortex (ACC), and right insula showed higher activity in the accident condition. In the post-accident period, the bilateral orbitofrontal cortex, right IPL, bilateral ACC, and middle and superior frontal gyrus also showed increased activity in the accident condition. We observed greater effective connectivity within the nodes of the limbic network (LN) and between the nodes of the attentional networks in the pre-accident period. In the post-accident period, we also observed greater effective connectivity between networks, from the ventral attention network (VAN) to the somatomotor network and from nodes in the visual network, VAN, and default mode network to nodes in the frontoparietal network, LN, and attentional networks. This suggests that activating salience-related processes and emotional processing allows the anticipation of accidents. Once an accident has occurred, integration and valuation of the new information takes place, and control processes are initiated to adapt behavior to the new demands of the environment.
Read full abstract