Winter temperatures in the North America (NA) exhibit evident intraseasonal variation, which has become more pronounced under global climate change. In particular, the wintertime relationship between NA temperatures and long-lasting positive sea surface temperature anomalies (SSTAs) in the Northeast Pacific (NEP), known as warm blobs, has been hotly debated in recent years. However, their relationship on intraseasonal timescales remains unclear. Using reanalysis data and an Atmospheric General Circulation Model, this study reveals that the intraseasonal variation of atmospheric circulation is the primary factor to induce intraseasonal temperature anomalies in NA after classifying warm SSTA events based on their different evolutions. Moreover, the atmospheric circulation anomalies over the mid-to-high-latitude regions are in part contributed by the feedback of NEP warm SSTAs to the atmosphere. Specifically, for early-winter warm SSTA events (peaking in November), there are two intraseasonal reversals in geopotential height anomalies over the NEP and NA, corresponding to a “cold-warm-cold” temperature change in NA. However, for mid-winter warm SSTA events (peaking in January), the atmospheric circulation pattern is relatively stable, mainly characterized by a “west high-east low” dipole, associated with persistent cold anomalies in NA. Then, the role of warm SSTAs over the NEP in the intraseasonal temperature variation is generally verified by the numerical simulations. Hence, although the NEP warm SSTAs may not be the dominant driver of the intraseasonal variations of winter NA temperatures, we emphasize the implication of their evolutionary differences in reflecting the NA temperature variations, which contributes to better predictability.
Read full abstract