The necessity for stable DC voltage in both removable and non-removable systems has been considerably desired recently. These systems have to be implemented efficiently in order to be responding rapidly based voltage variations. Under this act, the efficient power can extend the lifetime of the employed batteries in such systems. The presented efficiency can be realized with respect to buck and boost components that were implemented to generate what is called positive Buck-Boost converter circuits. The main functions of the positive Buck-Boost converter are identified by announcing the unchanged situation of output voltage polarity and indicating the level of the voltage rationally between the input and the output. It is worth mention, the positive Buck-Boost converter circuit was simulated based Proteus software, and the hardware components were connected in reality. Finally, the microcontroller type that employed in the proposed system is PIC_16F877A, which realizes the input voltage sensitively to generate Pulse Width Modulation (PWM) signals in order to feed the employed MOSFET element.