The area of tropical secondary forests is increasing rapidly, but data on the physical and biological structure of the canopies of these forests are limited. To obtain such data and to measure the ontogeny of canopy structure during tropical rainforest succession, we studied patch-scale (5 m2) canopy structure in three areas of 18–36 year-old secondary forest in Costa Rica, and compared the results to data from old-growth forest at the same site. All stands were sampled with a stratified random design with complete harvest from ground level to the top of the canopy from a modular portable tower. All canopies were organized into distinct high- and low-leaf-density layers (strata), and multiple strata developed quickly with increasing patch height. The relation of total Leaf Area Index (LAI, leaf area per area of ground) to patch canopy height, the existence of distinct high and low leaf- density layers (strata and free air spaces), the depth and LAI of the canopy strata and free air spaces, and the relation of the number of strata to patch canopy height were remarkably constant across the entire successional gradient. Trees were the most important contributor to LAI at all stages, while contribution of palm LAI increased through succession. We hypothesize that canopy physical structure at the patch scale is driven by light competition and discuss how this hypothesis could be tested. That canopy physical structure was relatively independent of the identity of the species present suggests that canopy physical structure may be conserved even as canopy floristics shift due to changing climate.