The conventional oil-absorbing materials utilized for addressing oil and organic solvent pollution are plagued by the issue of secondary pollution. In this study, biodegradable porous polylactic acid (PLA) fiber materials were prepared using centrifugal spinning technology, with PLA and polyvinyl butyral (PVB) as raw materials. PVB was utilized as a pore-forming agent to fabricate multi-layered porous PLA fiber materials. When the content of PVB in the spinning solution was 14 %, the porous PLA fibers exhibited the maximum specific surface area of 60.7 m2/g and a porosity of up to 85.4 %, interior of the fiber contained numerous mesopores. Additionally, the porous PLA fibers demonstrated excellent superhydrophobic oil absorption properties, with a water static contact angle of 137.8° and oil or organic solvent absorption capacities ranging from 10 to 17.7 g/g. Furthermore, porous PLA fiber materials exhibited outstanding biodegradability, with a degradation mass loss rate of 42.3–45.1 %. Therefore, superhydrophobic and oleophilic biomass-based PLA fiber materials prepared in centrifugal spinning show promising applications in the recovery of organic solvents and oily substances.
Read full abstract