When performing primary and revision total hip arthroplasty (THA), bone defects are often encountered. At present, grafting osseous defects with autogeneic bone is a common means of treatment. In this study, defects in bone were created in the femora and acetabula of dogs being treated with cementless THA with a fiber metal implant (Group A) or a hydroxyapatite tricalcium phosphate (HA/TCP) sprayed implant (Group B). The following methods of defect filling were compared: (1) leaving defects unfilled, (2) filling with autogeneic bone graft, (3) filling with a 50:50 mixture of autograft and a biphasic ceramic composed of HA/TCP, and (4) filling with a collagen-HA/TCP-bone marrow mixture. Analysis of defect healing and the extent of ingrowth into the overlying fiber metal, at defect sites and sites distant from defects, was made at six, 12, and 24 weeks postimplantation. Defect healing was enhanced at six and 12 weeks in all grafted groups when compared with ungrafted controls. Bone ingrowth into the porous fiber metal overlying the defects was not significantly affected by grafting the defects, compared with the ungrafted defects. The extent of bone ingrowth into the fiber metal acetabular implant at sites away from the defects increased during the entire study. In contrast, the extent of bone ingrowth on the femoral side was maximal at 12 weeks. The HA/TCP coating enhanced ingrowth into the acetabular component at 12 weeks, compared with the uncoated prosthesis, but did not enhance ingrowth on the femoral side. The data from this study demonstrate that defect healing is enhanced with graft materials. However, this does not necessarily result in increased ingrowth into porous surfaces overlying osseous defects. General bone ingrowth and ingrowth at defect sites at 12 weeks postimplantation can be enhanced on the acetabular side with the use of HA/TCP-sprayed implants. However, no positive effect is seen with the use of an HA/TCP-sprayed femoral implant.