In this study, the feasibility of using bamboo bark fibers as modifiers to enhance asphalt mortar performance was investigated. Bamboo bark fibers were modified with NaOH, KH570 silane coupling agent, and nano-SiO2, and their preparation methods were established. The modified fibers were assessed for their oil absorption, thermal stability, and hydrophobicity. The asphalt mortar was evaluated for three key indicators: rutting resistance, deformation resistance, and durability at high temperatures. The microscopic morphology and modification mechanisms of the fibers were also studied. The results showed that modification with NaOH increased fiber porosity and surface roughness, while KH570 and its hydrolysis products enabled nano-SiO2 grafting onto the fibers, improving their adsorption to asphalt. The NaOH-KH570-nano-SiO2 ternary-composite-modified bamboo bark fiber (NKSBF) demonstrated superior hydrophobicity, oil absorption, and thermal stability at the asphalt mixing temperature. Among the modified fibers, asphalt mortar containing 3% NKSBF showed the best performance based on three key indicators, increased the shear strength by 96.4% and the softening point by 7.1% compared to the base asphalt, and increased the ductility by 1% compared to lignin fiber asphalt mortar. The incorporation of 3% bamboo bark fibers improved the rutting resistance, deformation resistance, and durability of short-term-aged asphalt mortar, with NKSBF showing the most significant improvement.