Mammalian milk is a key source of lipids, providing not only important calories but also essential fatty acids. Veterinary medicine and omics systems sciences intersection, termed as "veterinomics" here, has received little attention to date but stands to offer much promise for building bridges between human and animal health. We determined the changes in porcine mammary genes and proteomics expression associated with milk triacylglycerol (TAG) synthesis and secretion from late pregnancy to lactation. TAG content and fatty acid (FA) composition were determined in porcine colostrum (the 1st day of lactation) and milk (the 17th day of lactation). The mammary transcriptome for 70 genes and 13 proteins involved in TAG synthesis and secretion from six sows, each at d -17(late pregnancy), d 1(early lactation), and d 17 (peak lactation) relative to parturition were analyzed using quantitative real-time PCR and Western blot analyses. The TAG content and the concentrations of de novo synthesized FAs, saturated FAs, and monounsaturated FAs were higher in milk than in colostrum (p<0.05). Robust upregulation with high relative mRNA abundance was evident during lactation for genes associated with FA uptake (VLDLR, LPL, CD36), FA activation (ACSS2, ACSL3), and intracellar transport (FABP3), de novo FA synthesis (ACACA, FASN), FA elongation (ELOVL1), FA desaturation (SCD, FADS1), TAG synthesis (GPAM, AGPAT1, LPIN1, DGAT1), lipid droplet formation (BTN2A1, XDH, PLIN2), and transcription factors and nuclear receptors (SREBP1, SCAP, INSIG1/2). In conclusion, a wide variety of lipogenic genes and proteins regulate the channeling of FAs towards milk TAG synthesis and secretion in porcine mammary gland tissue. These findings inform future omics strategies to increase milk fat production and lipid profile and attest to the rise of both veterinomics and lipidomics in postgenomics life sciences.
Read full abstract