Aim: This study aimed to assess how different restoration materials affect the trueness of intraoral scanners. Materials and Methods: Artificial teeth on a typodont model were prepared for crowns and fixed partial dentures (FPDs) using full metal, monolithic zirconia, and porcelain-fused-to-metal (PFM) materials. Each group underwent 10 scans with a Trios intraoral scanner, generating 60 STL files. A reference scanner created a master model using scanning spray to reduce reflection errors. The STL files were aligned with reverse engineering software for comparison and were analyzed in micrometers (μm) using Root Mean Square (RMS) and Mean Distance measurements. The Levene test and two-way ANOVA with Post Hoc analysis were used for statistical evaluation. Results: The RMS deviations for the FPDs were 77.9 ± 15.2 μm (full metal), 84.6 ± 6.9 μm (monolithic zirconia), and 130 ± 19.7 μm (PFM). For the crowns, the RMS values were 76.9 ± 6.5 μm (metal), 71 ± 8.2 μm (monolithic zirconia), and 153 ± 22.4 μm (PFM). The mean distance deviations for the FPDs were 11.4 ± 4.8 μm (metal), 11.2 ± 3.4 μm (monolithic zirconia), and 18.3 ± 2.6 μm (PFM). For the crowns, the mean distances were 8.6 ± 3.4 μm (metal), 10.2 ± 3 μm (monolithic zirconia), and 24.7 ± 3.3 μm (PFM). Significant differences were noted in the PFM groups. Conclusion: Restoration materials notably affected intraoral scanner trueness, especially PFM restorations. The restoration length did not significantly affect the accuracy.