This paper describes one of the first studies applying wastewater surveillance to monitor Chlamydia and Syphilis and back-estimate infections in the community, based on bacterial shedding and wastewater surveillance data. Molecular biology laboratory methods were optimized, and a workflow was designed to implement wastewater surveillance tracking Chlamydia and Syphilis in the Detroit metro area (DMA), one of the most populous metropolitan areas in the U.S. Untreated composite wastewater samples were collected weekly from the three main interceptors that service DMA, which collect wastewater and discharge it to the Great Lakes Water Authority Water Resource Recovery Facility. Additionally, untreated wastewater was also collected from street manholes in three neighborhood sewersheds in Wayne, Macomb, and Oakland counties. Centrifugation, DNA extraction, and ddPCR methods were optimized and performed, targeting Chlamydia trachomatis and Treponema pallidum, the causative agents of Chlamydia and Syphilis, respectively. The limit of blank and limit of detection methods were determined experimentally for both targets. Both targets were detected and monitored in wastewater between December 25th, 2023, and April 22nd, 2024. The magnitudes of C. trachomatis and T. pallidum concentrations observed in neighborhood sewersheds were higher as compared to the concentrations observed in the interceptors. Infections of Chlamydia and Syphilis were back-estimated through an optimized formula based on shedding dynamics and wastewater surveillance data, which indicated potentially underreported conditions relative to publicly available clinical data.