BackgroundGlioma is the most common primary malignant tumor in the brain, and even with standard treatments including surgical resection, radiotherapy, and chemotherapy, the long-term survival rate of patients remains unsatisfactory. Recurrence is one of the leading causes of death in glioma patients. The molecular mechanisms underlying glioma recurrence remain unclear.MethodsOur study utilized single-cell sequencing, spatial transcriptomics, and RNA-seq data to identify a subtype of FN1 + tumor-associated macrophages (FN1 + TAMs) associated with glioma recurrence.ResultsThis study revealed an increased abundance of FN1 + TAMs in recurrent gliomas, indicating their potential involvement as a critical factor in glioma recurrence. A negative correlation was observed between the abundance of FN1 + TAMs in primary gliomas and the interval time to recurrence, suggesting poor prognosis for glioma patients with high levels of FN1 + TAMs. Further investigation showed that FN1 + TAMs were enriched in hypoxic tumor regions, implying that metabolic changes in tumors drive the production and recruitment of FN1 + TAMs. Additionally, FN1 + TAMs were found to contribute to the regulation of an immunosuppressive microenvironment in gliomas, and their abundance might serve as an indicator of patients’ sensitivity to immunotherapy. Finally, we developed a user-friendly website, PRIMEG (http://www.szflab.site/PRIMEG/), for exploring the immune microenvironment of primary and recurrent gliomas.ConclusionOur findings highlight a subtype of FN1 + TAMs associated with glioma recurrence, providing new insights into potential therapeutic targets. Moreover, the abundance of FN1 + TAMs hold promise for predicting immune therapy response and aiding in more precise risk stratification of recurrent glioma patients.
Read full abstract