Dental erosion is a chemical-mechanical process that leads to the loss of dental hard tissues. This study aimed to investigate the effect of pomegranate juice on the enamel. Enamel blocks were randomly divided into three groups: deionized water, cola, and pomegranate juice. The blocks were immersed in the solutions four times a day for 14 days, and stored in artificial saliva for the remaining period. The surface hardness was measured on days 7 and 14. The surface structures of the demineralized blocks were observed via scanning electron microscopy (SEM), and the depth of demineralization was observed via confocal laser scanning microscopy (CLSM). The pH, calcium, and phosphorus levels of the three solutions were analyzed. The microhardness values of the blocks in the pomegranate juice and cola groups decreased with the increase in the demineralization time. The blocks in the pomegranate juice group exhibited large fractures in the enamel column, whereas those in the cola group had pitted enamels with destruction of the interstitial enamel column. Compared with cola group, fluorescent penetration increased in pomegranate juice (P < 0.01). The pH of cola (2.32 ± 0.09) was lower than that of pomegranate juice (3.16 ± 0.16). Furthermore, the calcium content in pomegranate juice was significantly higher than that in cola (P < 0.01). Alternatively, the concentration of phosphorous in cola was significantly higher than that in pomegranate juice (P < 0.01). These findings indicate that pomegranate juice can cause enamel demineralization with an erosive potential comparable to that of cola.