Salmonella and Escherichia coli are important foodborne pathogens, forming bacterial biofilms that contribute to their virulence, antimicrobial resistance, and survival on surfaces. Broad lytic phages are promising alternatives to conventional technologies for pathogen biocontrol and reducing biofilms. Herein, we isolated and characterized a novel polyvalent phage STP55 that not only lyse some serotypes of Salmonella, but also some E. coli strains. It had a wide range of pH (4-12) and thermal (30-60°C) tolerances. The latent time was determined to be 10min in the one-step growth experiment. Morphological observations by transmission electron microscopy and phylogenetic analysis using terminase gene classified STP55 to family Ackermannviridae in the order Caudovirales, with a complex tail structure. The genome was found to comprise 157,708bp double-stranded DNA, with 44.57% GC content, 207 predicted ORFs and with no genes associated with antibiotic resistance, toxins, lysogeny, and virulence factors. Particularly, phage STP55 was able to inhibit single- and dual-species biofilms formation by S. Typhimurium ATCC 14028 and E. coli O157: H7, with a reduction percentage of 51.0%, 47.8% and 52.8%, respectively. Moreover, more than 65.0%, 72.9% and 46.2% of an established, single- and dual-species biofilms by S. Typhimurium ATCC 14028 and E. coli O157: H7 were removed after 8h exposure to the phage STP55, respectively. The elimination effect of STP55 on dual-species biofilm formed on lettuce was further observed by SEM. Overall, our results demonstrated that STP55 is a promising antimicrobial against Salmonella and E. coli.