The role of epigenetics in regulating caste polyphenism in social insects has been debated. Here, we tested the importance of histone de/acetylation processes for the maintenance of queen hallmarks like a high fecundity and a long lifespan. To this end, we performed RNA interference experiments against histone deacetylase 3 (HDAC3) in the termite Cryptotermes secundus. Fat body transcriptomes and chemical communication profiles revealed that silencing of HDAC3 leads to signals indicative of queen hallmarks. This includes fostering of queen signalling, defence against ageing and a reduction of life-shortening IIS (insulin/insulin-like growth factor signalling) and endocrine JH (juvenile hormone) signalling via Kr-h1 (Krüppel-homologue 1). These observed patterns were similar to those of a protein-enriched diet, which might imply that histone acetylation conveys nutritional effects. Strikingly, in contrast to solitary insects, reduced endocrine JH signalling had no negative effect on fecundity-related vitellogenesis in the fat bodies. This suggests an uncoupling of longevity pathways from fecundity in fat bodies, which can help explain queens' extraordinary lifespans combined with high fecundity.