This paper derives some generalized Schur-type stability results of polynomials based on several forms and generalizations of the Eneström–Kakeya theorem combined with the Rouché theorem. It is first investigated, under sufficiency-type conditions, the derivation of the eventually generalized Schur stability sufficient conditions which are not necessarily related to the zeros of the polynomial lying in the unit open circle. In a second step, further sufficient conditions were introduced to guarantee that the above generalized Schur stability property persists within either the same above complex nominal stability region or in some larger one. The classical weak and, respectively, strong Schur stability in the closed and, respectively, open complex unit circle centred at zero are particular cases of their corresponding generalized versions. Some of the obtained and proved results are further generalized “ad hoc” for the case of quasi-polynomials whose zeros might be interpreted, in some typical cases, as characteristic zeros of linear continuous-time delayed time-invariant dynamic systems with commensurate constant point delays.