Host genetic factors, such as the genes for various cytokines and adhesion molecules, play a significant role in determining susceptibility to malaria infection. Polymorphisms in host genes have been correlated with malaria infection in both African and Asian regions. The purpose of this study was to investigate the association between both cytokine and adhesion molecule genotypes with susceptibility to malaria infection in humans. Ten cytokine polymorphism loci (IL4 + 33, IL4-590, IL6-174, IL10-1082, IL10-1035, IL12p40, TNF-238, TNF-308, TNF-1031, and TNF-β) and three adhesion molecule polymorphism loci (CD36 exon 10, ICAM-1 Kilifi, and ICAM-1 exon 6) were genotyped using PCR-RFLP analysis. We conducted this study on 178 asymptomatic malaria subjects and 122 uninfected subjects. Results showed that certain CD36 exon 10 and IL10-3575 polymorphisms were associated with asymptomatic infection. The heterozygous (GT) and homozygous (GG) genotypes for CD36 exon 10 are associated with an increased risk of malaria infection. On the other hand, the homozygous genotype (AA) for IL10-3575 reduced the risk of asymptomatic malaria infection. No significant differences were found for the other polymorphisms studied. We also found that a polymorphism in CD36 exon 10 was strongly associated with asymptomatic malaria caused specifically by Plasmodium vivax. These findings suggest that the G allele of CD36 exon 10 is associated with an increased risk of asymptomatic malaria infection. On the other hand, the genotype AA for IL10-3575 was associated with a reduced risk of malaria infection.
Read full abstract