The known O2((1)∆g)-sensitizer system Chitosan bounded Rose Bengal (CH-RB), with Rose Bengal (RB) immobilized by irreversible covalent bonding to the polymer Chitosan (CH), soluble in aquous acidic medium, was employed in the photodegradation of three tri-hydroxy benzene water-contaminants (THBs). The system sensitizes the O2((1)∆g)-mediated photodegradation of THBs by a process kinetically favored, as compared to that employing free RB dissolved in the same solvent. Additionally the free xanthene dye, degradable by O2((1)∆g) through self-sensitization upon prolonged light-exposure, is considerably protected when bonded to CH-polymer. The polymeric sensitizer, totally insoluble in neutral medium, can be removed from the solution after the photodegradative cycle by precipitation through a simple pH change. This fact constitutes an interesting aspect in the context of photoremediation of confined polluted waters. In other words, the sensitizing system could be useful for avoiding to dissolve dyestuffs in the polluted waters, in order to act as conventional sunlight-absorbing dye-sensitizers. In parallel the interaction CH-O2((1)∆g) in acidic solution was evaluated. The polymer quenches the oxidative species with a rate constant 2.4 × 10(8) M(-1) s(-1) being the process mostly attributable to a physical interaction. This fact promotes the photoprotection of the bonded dye in the CH-RB polymer.