The indiscriminate administration of broad-spectrum antibiotics is a primary contributor to the increasing prevalence of antibiotic resistance. Unfortunately, culture, the gold standard for bacterial identification is a time intensive process. Due to this extended diagnostic period, broad-spectrum antibiotics are generally prescribed to prevent poor outcomes. To overcome the deficits of culture-based methods, we have developed a rapid universal bacterial identification system. The platform utilizes a unique universal polymerase chain reaction (PCR) primer set that targets the internal transcribed spacer (ITS) regions between conserved bacterial genes, creating a distinguishable amplicon signature for every bacterial species. Bioinformatic simulation demonstrates that at least 45 commonly isolated pathogenic species can be uniquely identified using this approach. We experimentally confirmed these predictions on a representative set of pathogenic bacterial species. We also show that the system can determine the corresponding concentration of each pathogen. Finally, we validated performance in clinical urinary tract infection samples.
Read full abstract