This study delves into the profound implications of employing an intensive xenon lamp treatment with a rapid curing method completed within 4 min, to fabricate a ZnO layer. Subsequently, we applied a coating of PM6:Y6 as the active layer and utilized MoO3/Ag as the contact electrode, aiming to advance the efficiency of polymer solar cells (PSCs) through entirely room-temperature processes. Our investigation juxtaposes this xenon lamp treatment with the conventional hot plate method for annealing the ZnO layer, conducted at 180 °C for both 20 min and 4 min. Remarkably, our proposed xenon lamp treatment process not only promotes charge transfer but also exhibits enhancements of the lattice oxygen in the Zn-O layer. This innovative methodology of xenon treatment yields a notable increase in power conversion efficiency (PCE), achieving 14.55 %, compared to 13.71 % and 12.44 % for the ZnO layers annealed with a hot plate for 20 min and 4 min, respectively. Moreover, devices subjected to the 4-min xenon lamp treatment maintained 85 % (T85) of their original Power Conversion Efficiency (PCE) after enduring 500 h of one-sun aging measurement. These findings evoke optimism regarding the xenon treatment's potential to streamline the fabrication process, and provide a promising avenue for mitigating interface degradation while enhancing the stability of PSCs.