Secondary reactions in radical polymerization pose a challenge when creating kinetic models for predicting polymer structures. Despite the high impact of these reactions in the polymer structure, their effects are difficult to isolate and measure to produce kinetic data. To this end, we used solvation-corrected M06-2X/6-311+G(d,p) ab initio calculations to predict a complete and consistent data set of intrinsic rate coefficients of the secondary reactions in acrylate radical polymerization, including backbiting, β-scission, radical migration, macromonomer propagation, mid-chain radical propagation, chain transfer to monomer and chain transfer to polymer. Two new approaches towards computationally predicting rate coefficients for secondary reactions are proposed: (i) explicit accounting for all possible enantiomers for reactions involving optically active centers; (ii) imposing reduced flexibility if the reaction center is in the middle of the polymer chain. The accuracy and reliability of the ab initio predictions were benchmarked against experimental data via kinetic Monte Carlo simulations under three sufficiently different experimental conditions: a high-frequency modulated polymerization process in the transient regime, a low-frequency modulated process in the sliding regime at both low and high temperatures and a degradation process in the absence of free monomers. The complete and consistent ab initio data set compiled in this work predicts a good agreement when benchmarked via kMC simulations against experimental data, which is a technique never used before for computational chemistry. The simulation results show that these two newly proposed approaches are promising for bridging the gap between experimental and computational chemistry methods in polymer reaction engineering.