In this study, polyhydroxybutyrate (PHB) – a biodegradable plastics material – was produced by activated sludge performing enhanced biological phosphorus removal (EBPR) in batch experiments under anaerobic, aerobic and anaerobic/aerobic conditions. Under anaerobic conditions, the maximum PHB content of the dry biomass was 28.8% by weight, while under aerobic or anaerobic/aerobic conditions, the maximum PHB content was about 50%. The PHB production rate with respect to the volatile suspended solids (VSS) was: (i) 70 mg/(g VSS) h under aerobic conditions that followed anaerobic conditions, (ii) 156 mg/(g VSS) h under anaerobic condition, and (iii) 200 mg/(g VSS) h under aerobic conditions with energy also supplied from polyphosphate. A side stream, with initially anaerobic conditions for PHB accumulation and phosphorus release, and then aerobic conditions for PHB accumulation, was proposed. In this side stream, biomass with a high PHB content and a high PHB production rate could be both achieved.
Read full abstract