The construction of simple cellular models has attracted much attention as a way to explore the origin of life or elucidate the mechanisms of cell division. In the absence of complex regulatory systems, some bacteria spontaneously divide through thermostatistically elucidated mechanisms, and incorporating these simple physical principles could help to construct primitive or artificial cells. Because thermodynamic interactions play an essential role in such mechanisms, this review discusses the thermodynamic aspects of spontaneous division models of vesicles that contain a high density of inclusions, with their membrane serving as a boundary. Vesicles with highly dense inclusions are deformed according to the volume-to-area ratio. The phase separation of beads at specific intermediate volume fractions and the associated polyhedral deformation of the membrane are considered in relation to the Alder transition. Current advances in the development of a membrane-growth vesicular model are summarized. The thermostatistical understanding of these mechanisms could become a cornerstone for the construction of vesicular models that display spontaneous cell division.