Achieving simple and efficient interfacial modification between carbon fiber and polyether ether ketone (PEEK) has been the pursuit of researchers. In this study, by comparing the nucleophilicity of various aromatic amines, a direct Schiff base reaction with polyether ether ketone (PEEK) has been achieved. Based on this, a “grafting-bridging” bifunctional diazonium salt containing a phenylethylamine structure was designed and synthesized to enhance the interfacial strength through covalent bonding without the use of sizing agents. The diazonium salt was grafted onto the surface of carbon fiber through electrochemical reduction, while the PEEK resin and phenylethylamine could achieve bridging through heat treatment, thus a PEEK/CF interface with enhanced covalent bonds was constructed. The reaction and conversion rate between phenylethylamine and PEEK resin were confirmed through IR and NMR. The successful grafting of the diazonium salt on the carbon fiber was determined through XPS and cyclic voltammetry. The bridging reaction on the surface of carbon fiber was verified through XPS and the use of 6F-PEEK with characteristic elements. As a result, the interfacial shear strength (IFSS) of the modified PEEK/CF interface reached 86.2 MPa, representing a 102.8 % improvement compared to the untreated interface of 42.5 MPa, fully demonstrating the excellent effect of the bifunctional diazonium salt.