Naturally occurring retinoids (retinol, retinal, retinoic acid, retinyl esters) are a subclass of β-apocarotenoids, defined by the length of the polyene side chain. Provitamin A carotenoids are metabolically converted to retinal (β-apo-15-carotenal) by the enzyme β-carotene-15,15′-dioxygenase (BCO1) that catalyzes the oxidative cleavage of the central C=C double bond. A second enzyme β-carotene-9′-10′-dioxygenase cleaves the 9′,10′ bond to yield β-apo-10′-carotenal and β-ionone. Chemical oxidation of the other double bonds leads to the generation of other β-apocarotenals. Like retinal, some of these β-apocarotenals are metabolically oxidized to the corresponding β-apocarotenoic acids or reduced to the β-apocarotenols, which in turn are esterified to β-apocarotenyl esters. Other metabolic fates such as 5,6-epoxidation also occur as for retinoids. Whether the same enzymes are involved remains to be understood. β-Apocarotenoids occur naturally in plant-derived foods and, therefore, are present in the diet of animals and humans. However, the levels of apocarotenoids are relatively low, compared with those of the parent carotenoids. Moreover, human studies show that there is little intestinal absorption of intact β-apocarotenoids. It is possible that they are generated in vivo under conditions of oxidative stress. The β-apocarotenoids are structural analogs of the naturally occurring retinoids. As such, they may modulate retinoid metabolism and signaling. In deed, those closest in size to the C-20 retinoids—namely, β-apo-14′-carotenoids (C-22) and β-apo-13-carotenone (C-18) bind with high affinity to purified retinoid receptors and function as retinoic acid antagonists in transactivation assays and in retinoic acid induction of target genes. The possible pathophysiologic relevance in human health remains to be determined.