Wearable sensing electronic devices based on hydrogel are gradually developing towards multifunction and portability, however, efficiently harvesting energy from the surrounding environment to power traditional hydrogel-based wearable electronic devices is a major challenge. The assembly of multilayer heterogeneous hydrogels is a potential strategy to address this challenge. Herein, inspired by the structure of diodes, a diode-like integrated hydrogel composed of a three-tier structure of anionic polyelectrolyte hydrogel, polyacrylamide hydrogel and cationic polyelectrolyte hydrogel is developed. By the connection of polyacrylamide hydrogel, the composite hydrogel exhibits excellent structural stability and mechanical properties. Notably, due to the introduction of MXene ion-conducting microchannels, the directional transport of free cations and anions ionized by anionic and cationic polyelectrolytes is achieved, thereby improving the conductivity (74.58 mS/cm), sensing (gauge factor = 7.47) and piezoionic output performance of the composite hydrogel. The composite hydrogel-based sensor can sense tiny facial movements and recognize the direction of human movement, and the composite hydrogel-based piezoionic generator exhibit more efficient mechanical-electric conversion performance, which can output the maximum voltage of 1410mV, current of 28 μA, and power density of 2.9mW/m2 for a composite hydrogel of 5×5 cm2. The integration of multilayer heterogeneous hydrogels proposes a versatile strategy for the development of high-performance hydrogel-based self-powered sensing electronic devices, expanding the application of hydrogels in artificial intelligence and human-computer interaction.
Read full abstract