Strategies for incorporating water-insoluble photosensitisers (PS) in drug delivery systems have been extensively studied. In this work, we evaluate the formation, characterisation, drug sorption studies, and cytotoxicity of chitosan (CHT)/chondroitin sulphate (CS) polyelectrolyte complexes (PECs) coated with polystyrene-block-poly(acrylic acid) (PS-b-PAA) nanoparticles (NPs) loaded with chloroaluminum phthalocyanine (AlClPc). The PECs were characterised by infrared spectroscopy (FTIR), differential scanning calorimetric (DSC), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The PS-b-PAA NPs on the PEC surface was confirmed by scanning electron microscopy (SEM). Additionally, optical images distinguished the PEC structures containing PS-b-PAA or PS-b-PAA/AlClPc from the unloaded PEC. Kinetic and equilibrium studies investigate the sorption capacity of the PEC/PS-b-PAA toward AlClPc. The encapsulation efficiency reached 95% at 190 μg mL−1 AlClPc after only 15 min. The Brunauer-Emmett-Teller (BET) isotherm and pseudo-second-order kinetic fitted well to the experimental data. The PS-b-PAA NPs on the PEC surfaces increase the AlClPc bioavailability and the PEC structure stabilizes the PS-b-PAA/AlClPc nanostructures. The materials were cytocompatible upon healthy VERO (kidney epithelial cells), and cytotoxic against colorectal cancerous cells (HT-29 cells). For the first time, we associate PS-b-PAA/AlClPc with a hydrophilic and cytocompatible polysaccharide matrix. We suggest the use of these materials in strategies to treat cancer by using photodynamic therapy.
Read full abstract