Transition-metal-catalyzed C-H activation has greatly benefited the synthesis and development of functional polymer materials, and the construction of multifunctional fused (hetero)cyclic polymers via novel C-H activation-based polyannulations has emerged as a charming but challenging area in recent years. Herein, we report the first cobalt(III)-catalyzed cascade C-H activation/annulation polymerization (CAAP) approach that can efficiently transform readily available aryl thioamides and internal diynes into multifunctional sulfur-containing fused heterocyclic (SFH) polymers. Within merely 3 h, a series of SFH polymers bearing complex and multisubstituted S,N-doped polycyclic units are facilely and efficiently produced with high molecular weights (absolute Mn up to 220400) in excellent yields (up to 99%), which are hard to achieve by traditional methods. The intermediate-terminated SFH polymer can be used as a reactive macromonomer to controllably extend or modify polymer main chains. The structural diversity can be further enriched through facile S-oxidation and N-methylation reactions of the SFH polymers. Benefiting from the unique structures, the obtained polymers exhibit excellent solution processability, high thermal and morphological stability, efficient and readily tunable aggregate-state fluorescence, stimuli-responsive properties, and high and UV-modulatable refractive indices of up to 1.8464 at 632.8 nm. These properties allow the SFH polymers to be potentially applied in diverse fields, including metal ion detection, photodynamic killing of cancer cells, fluorescent photopatterning, and gradient-index optical materials.
Read full abstract