Natural attenuation of naphthalene (NAP) in riverbank filtration zones is vital for maintaining water quality and is affected by dissolved organic matter (DOM) and iron minerals. However, the effects of DOM and iron minerals on the attenuation of NAP remain unclear. In this study, the attenuation mechanisms of NAP under the influence of DOM and iron minerals were explored in a riverside source area. Field dynamic monitoring data revealed that the NAP concentration in groundwater is mainly influenced by DOM, effective bound‑iron, and the intensity of river water infiltration recharge. Column experiments indicated that DOM with α-Fe2O3 or α-FeO(OH) reduced medium permeability by 8.16 % or 6.85 %, respectively, increasing water retention time. However, they had different effects on the attenuation of NAP. The coexistence of α-Fe2O3 and DOM enhanced NAP attenuation capacity by 9.13 %–45.91 %, while α-FeO(OH) and DOM reduced it by −13.25 % to −24.13 %. These effects were attributed to changes in the medium permeability, particle size, secondary mineral formation, and microbial community structure. Specifically, α-Fe2O3 and DOM reduced medium permeability, increasing the adsorption and biodegradation reaction time of NAP, and promoted secondary mineral (FeCO3) formation, increasing the adsorption capacity of medium for NAP, while α-FeO(OH) and DOM underwent cementation, resulting in larger particles and reduced adsorption capacity for NAP. Additionally, α-FeO(OH) and DOM promoted Shewanlla growth, inhibiting NAP attenuation by competing with NAP-degrading bacteria. These findings improve the understanding of the natural attenuation of polycyclic aromatic hydrocarbons (PAHs) in riverbank filtration, offering a basis for evaluating and controlling PAH pollution risks.
Read full abstract