This article presents the results of the long-term studies at two stations located in the city of Irkutsk and the Listvyanka settlement of the southern Baikal region (East Siberia) concerning the concentration of polycyclic aromatic hydrocarbons (PAHs) in atmospheric aerosol. The studies revealed the seasonal and interannual dynamics in the distribution of PAHs in aerosols from urban (source) and rural (receptor) areas. We carried out a comprehensive analysis of weather conditions such as wind direction, relative humidity, air temperature, and atmospheric pressure. The analysis determined high correlations between air temperature, atmospheric pressure, temperature inversions, and PAHs at the monitoring stations. The average annual concentrations of PAHs in the abnormally warm 2020 were three times lower than the average values obtained in the cold 2016. The toxic equivalent concentrations (BaPeq) increased from summer to winter with an increase in the contribution from benzo(a)pyrene, one of the most toxic and hazardous compounds of this class of organic substances. Four-, five- and six-ring PAHs mainly predominated in aerosol; the proportion of two- and three-ring PAHs increased from the warm season to the cold season. Diagnostic ratios of PAHs identified the main sources of air pollution by this class of compounds: combustion of coal, liquid fuel and firewood, vehicle emissions, and wildfires. The percentage of the transport of anthropogenic aerosol containing PAHs from industrial sources of the Southern Baikal region towards Lake Baikal was 65 to 71%.
Read full abstract