Bone defects present significant clinical challenges in orthopedics, orthodontics, and maxillofacial surgeries. Accelerated bone regeneration can be facilitated by incorporating mesenchymal stem cells, but limitations in cell survival and growth remain concerns for complete bone repair. Biomaterial-based membranes have been developed to form biocompatible, degradable, and mechanically stable barriers in guided bone regeneration processes. Polycaprolactone (PCL) is a biodegradable polymer widely used as a bone regenerative material because of its favorable mechanical properties. However, its inherent hydrophobicity limits cell adhesion and proliferation, which are necessary for effective bone regeneration. To address this, we fabricated cell-regulatory PCL nanofiber membranes using plasma treatment to enhance induced pluripotent stem cell-derived mesenchymal stem cells and osteoblast growth. The plasma treatment parameters (gas type, flow rate, power, and exposure time) were optimized to enhance PCL’s surface hydrophilicity and protein adsorption properties while maintaining its mechanical integrity. The optimized oxygen plasma-modified PCL membrane demonstrated notable improvements in cell viability, adhesion, and proliferation. In addition, there was improved migration, regulated by cell surface markers and signaling proteins, of the induced pluripotent stem cell-derived mesenchymal stem cells and osteoblasts. In vivo studies in a rat calvarial defect model showed that the plasma-modified PCL membrane dramatically improved new bone formation, facilitating bone regeneration. These findings highlight the potential of plasma treatment of PCL nanofibers to produce effective cell-regulatory membranes for bone defect reconstruction.
Read full abstract