Diet is considered as the most important human exposure pathway for polybrominated diphenyl ethers (PBDEs). Metabolism and accumulation patterns of PBDEs in different growth periods of chickens are helpful for evaluating human dietary exposure, but such information is scarce. In this study, female chickens were fed with food spiked with BDE-209 at 85 mg kg−1, and the intake, accumulation, and excretion of BDE-209 and its main metabolites in various tissues were examined. Concentrations of BDE-209 in chicken tissues increased over time in a tissue-specific manner; they were the greatest in liver and generally the lowest in breast meat during the entire exposure period. The kinetic patterns were dependent on both growth-dilution effects and accumulated concentrations of BDE-209. Tissue concentrations of ∑8PBDE (sum of BDE-28, 47, 99, 100, 153, 154, 183, and 209) followed the sequence of liver > blood > skin > intestine > stomach > leg meat > breast meat. Different tissue partition coefficients and perfusion rates for blood may have resulted in different PBDE concentrations in tissues. The absorption efficiency of BDE-209 in chicken tissues followed the sequence of liver (0.15 ± 0.032%) > skin (0.14 ± 0.038%) > intestine (0.071 ± 0.021%) > breast meat (0.062 ± 0.020%) > leg meat (0.059 ± 0.016%) > stomach (0.021 ± 0.0095%), likely due in part to facilitated absorption of BDE-209 by transport proteins (P-glycoproteins). On average, 9.3 ± 1.7% of BDE-209 was excreted in feces. Estimated human average dietary intake via the consumption of chicken tissues of ∑8PBDE for adults and children was 319 and 1380 ng day−1 for liver, 211 and 632 ng day−1 for leg meat, and 104 and 311 ng day−1 for breast meat from the contaminated group. Liver clearly poses the highest exposure risk for human consumption, particularly if chickens are fed with contaminated feed.
Read full abstract