Mode specificity not only sheds light on reaction dynamics but also opens the door for chemical reaction control. This work reports a state-of-the-art full-dimensional quantum dynamics study on the prototypical hydrogen abstraction reaction of hydrogen with ammonia, which serves as a benchmark for advancing our fundamental understanding of polyatomic reaction dynamics. By taking advantage of the (3 + 1) Radau-Jacobi coordinates, the bond-specific probabilities are resolved with the reactant NH3 initiated from either a non-degenerate or degenerate stretching vibrational state. The observed different atom-specific abstraction probabilities from individual states of the degenerate pair are rationalized in the local mode representation according to the different vibrational energy deposited in each N-H bond. It is verified that the three H atoms in NH3 have the same abstraction probability as that from the degenerate pair and the linear combination of the degenerate pair gives the same reaction probability. In addition, the symmetric and asymmetric stretching modes of the reactant NH3 have comparable efficacies on driving the reaction.