Several studies reported that the widespread use of perfluoroalkyl and polyfluoroalkyl substances (PFASs) causes increased environmental pollution, subsequently impacting aquatic organisms. Perfluoroalkyl substances such as perfluorooctane sulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) reportedly cause cardiotoxicity, neurotoxicity, and developmental toxicity in different organisms. However, whether perfluorodecanoic acid (PFDA), a widely used perfluoroalkyl substance, induces animal embryos developmental toxicity remain unknown. Here, we explored the immunotoxicity and associated mechanisms of PFDA in zebrafish embryos via RNA sequencing, morphological assessment and behavioral alteration detection following exposure to 0.5, 1 and 2 mg/L of PFDA. Interestingly, We found that with the increase of PFDA to drug concentration, including neutrophils and macrophages, significantly increased the number of inherent cells, immune related genes expression. Furthermore, oxidative stress increased in the PFDA-treated embryos in a dose-dependent manner and inhibition of oxidative stress levels effectively rescued the number of neutrophils. Changes in embryonic behavior were observed after exposure to PFDA. Overall, our results suggest that PFDA may induce innate immune response by accumulation of oxidative stress in zebrafish at early developmental stages, and concern is needed about its environmental exposure risks for animals embryos development. Environmental implicationPerfluorinated and polyfluorinated alkyl substances (PFASs) are a class of synthetic organic compounds containing fluorine widely used as lubricants, surfactants, insecticides, etc. The PFDA, a typical perfluorinated compound, is often used as a wetting agent and flame retardant in industries.Several studies showed that PFASs can cause serious environmental pollution, leading to developmental toxicity to various animals, including reproductive toxicity, liver toxicity, heart toxicity, neurotoxicity, and immunotoxicity.However, there are still limited studies on the effects and mechanisms of PFDA on aquatic organisms. Therefore, there is a need to evaluate the ecological risks of PFDA in animals.
Read full abstract