Non-steroidal anti-inflammatory drugs (NSAIDs) are widespread pollutants in aquatic environments, posing significant risks to both ecosystems and human health due to their persistence and bioaccumulation. Effective and sustainable degradation methods are urgently required to address this environmental challenge. This study aims to design and optimize a cytochrome P450BM3-based biocatalyst for the rapid and efficient degradation of NSAIDs by direct chemical intervention and protein engineering. The novel biocatalyst achieved efficient biodegradation of four common NSAIDs. Notably, the F87I/T268D mutant achieved 99.22% degradation of diclofenac (DCF) within 10min, and degraded meloxicam (MEL) and phenylbutazone (PBZ) at rates of 98.86% and 90.51% within 5min, respectively. Furthermore, the F87G mutant accomplished 99.08% degradation of acetaminophen (APAP) within just 2min. The catalytic properties of P450BM3 and its mutants were evaluated through kinetic studies, and potential degradation pathways of the four NSAIDs were proposed in conjunction with UPLC-MS. This study provides a novel biocatalytic approach for the rapid degradation of NSAIDs in aquatic systems, offering considerable environmental benefits for pollution mitigation.
Read full abstract