Immobilization technology is a promising way to improve effectiveness and stability of microbial remediation for polycyclic aromatic hydrocarbons (PAHs), in which carrier material is one of key factors restricting removal efficiency. In this study, fulvic acid-wheat straw biochar (FA/WS) composites were applied for immobilization of an efficient PAHs degrading bacterium Stenotrophomonas maltophilia (SPM). FA/WS&SPM showed superior degradation capacity than free bacteria and biochar-immobilized bacteria, with the removal efficiency of pyrene (20 mg L-1) reaching 90.5 % (7 days). Transcriptome analysis revealed that FA in the carrier materials can promote transportation and degradation of pyrene, and cell growth, as well as inhibit cell apoptosis. Enzyme activity and degradation products detection showed that SPM utilized both phthalic acid and salicylic acid metabolic pathways to degrade pyrene. Practicality of FA/WS&SPM for different kinds of PAHs remediation had been verified in contaminated soil, demonstrating a great potential in the field of PAHs polluted sites remediation.
Read full abstract