Utilizing carbon coated ferroelectric materials to introduce polarization‐induced electric field (PIEF) stimulates research of electric field‐assisted catalysts for various reactions. However, effect of PIEF on carbon coating mechanism has not been studied. Herein, tourmaline nanoparticles (TNPs) with spontaneous dipole moments were applied as the PIEF supplier and sucrose was utilized as the carbon precursor to synthesize carbon coated TNPs (TNP@SC) to uncover the influence of PIEF on the carbon coating and catalytic activity of Pd toward formic acid decomposition (FAD). PIEF enhanced the adsorption capacity of TNPs for the caramelized intermediate species and increased H+ concentration by facilitating water ionization. Polymerization of adsorbed caramelized intermediate species on TNPs was accelerated. Uniformly coated carbon layer with more defects, larger specific surface area, and higher porosity was coated on TNP. Such surface properties of the carbon layer were beneficial for strongly anchoring ultrafine Pd nanoparticles. Owing to the specific properties of carbon layer and existence of PIEF, Pd/TNP@SC exhibited higher FAD activity than the catalysts absent of PIEF. Stronger PIEF leaded to higher initial turnover frequency. This study provides guidance to supply electric field for catalysis.