Learning Granger causality from event sequences is a challenging but essential task across various applications. Most existing methods rely on the assumption that event sequences are independent and identically distributed (i.i.d.). However, this i.i.d. assumption is often violated due to the inherent dependencies among the event sequences. Fortunately, in practice, we find these dependencies can be modeled by a topological network, suggesting a potential solution to the non-i.i.d. problem by introducing the prior topological network into Granger causal discovery. This observation prompts us to tackle two ensuing challenges: 1) how to model the event sequences while incorporating both the prior topological network and the latent Granger causal structure, and 2) how to learn the Granger causal structure. To this end, we devise a unified topological neural Poisson auto-regressive model with two processes. In the generation process, we employ a variant of the neural Poisson process to model the event sequences, considering influences from both the topological network and the Granger causal structure. In the inference process, we formulate an amortized inference algorithm to infer the latent Granger causal structure. We encapsulate these two processes within a unified likelihood function, providing an end-to-end framework for this task. Experiments on simulated and real-world data demonstrate the effectiveness of our approach.
Read full abstract