Results of spectroscopic investigations and current-voltage characteristics of corona and back discharges generated in point-plane electrode geometry in CO2 at atmospheric pressure for positive and negative polarity of the discharge electrode are presented in the paper. Three forms of back discharge, for both polarities, were investigated: glow, streamer and low-current back-arc. To generate the back-discharges for the conditions similar to electrostatic precipitator, the plate electrode was covered with fly ash layer. In order to characterize back discharge processes, the emission spectra were measured and compared with those obtained for normal discharge, generated in the same electrode configuration but without the fly ash layer on the plate electrode. The measurements have shown that optical emission spectral lines of atoms and molecules, excited or ionised in back discharge, depend on the forms of the discharge, the discharge current, and are different in the zones close to needle electrode and fly ash layer. From the comparison of spectral lines of back and normal discharges, an effect of fly ash layer on discharge characteristics and morphology has been determined. In normal corona, the emission spectra are mainly predetermined by the working gas components, but in the case of back discharge, the atomic and molecular lines, resulting from chemical composition of fly ash, are also identified. Differences in the spectra of back discharge for positive and negative polarities of the needle electrode have been explained by considering the kind of ions generated in the crater in fly ash layer. For back arc, the emission of spectral lines of atoms and molecules from fly ash layer can be recorded in the crater zone, but in the needle zone, only the emission lines of CO2 and its decomposition products (CO and C2) can be noticed. The studies of back discharge in CO2, as one of the main components of flue gases, were undertaken because this type of discharge, after unwanted inception, decreases the energy and collection efficiencies of electrostatic precipitator. The second reason behind these studies is that CO2 is the main component of flue gas leaving oxyfuel boiler that re-circulates in the combustion-precipitation cycle. It was shown that discharges in CO2 lead to contamination of discharge electrode with carbonaceous products that can cause severe maintenance problems of electrostatic precipitator. The recognition of the characteristics of electrostatic precipitator operating in the oxyfuel system is, therefore, of crucial importance for exhaust gas cleaning in modern combustion systems.